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Abstract

Both lattice Boltzmann method (LBM) and the gas-kinetic BGK scheme are based on the numerical discretization of

the Boltzmann equation with collisional models, such as, the Bhatnagar–Gross–Krook (BGK) model. LBM tracks

limited number of particles and the viscous flow behavior emerges automatically from the intrinsic particle stream and

collisions process. On the other hand, the gas-kinetic BGK scheme is a finite volume scheme, where the time-dependent

gas distribution function with continuous particle velocity space is constructed and used in the evaluation of the nu-

merical fluxes across cell interfaces. Currently, LBM is mainly used for low Mach number, nearly incompressible flow

simulation. For the gas-kinetic scheme, the application is focusing on the high speed compressible flows. In this paper,

we are going to compare both schemes in the isothermal low-Mach number flow simulations. The methodology for

developing both schemes will be clarified through the introduction of operator splitting Boltzmann model and operator

averaging Boltzmann model. From the operator splitting Boltzmann model, the error rooted in many kinetic schemes,

which are based on the decoupling of particle transport and collision, can be easily understood. As to the test case, we

choose to use the 2D cavity flow since it is one of the most extensively studied cases. Detailed simulation results with

different Reynolds numbers, as well as the benchmark solutions, are presented.
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1. Introduction

Lattice Boltzmann method (LBM) and the gas-kinetic scheme BGK are based on the kinetic equations
for solving hydrodynamic systems described by the Navier–Stokes equations. The LBM is fully discrete in
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time and phase space, which is a simplified version of the continuous Boltzmann equation. Due to the

sampling of the particle velocities around zero velocity, LBM is limited to the low-Mach number (nearly

incompressible) flow simulation. The introduction of LBM method and its history can be found in

[4,11,21,23], and references therein. From the theoretical analysis and numerical evidence, it is commonly

recognized that the LBM can faithfully be used to simulate the incompressible Navier-Stokes equations

with high accuracy [10]. Recently, many attempts have been tried to extend the LBM to the compressible

flow regime [1,9,13,14,22].

The gas-kinetic BGK scheme is a finite volume scheme, which originally targets to simulate compressible
flows. The use of the BGK model here is to construct a time-dependent gas distribution function at a cell

interface, from which the numerical fluxes are evaluated. For the compressible flow simulations, the gas-

kinetic BGK scheme is verified to be a robust and accurate method, see [24] and references therein. It

possesses excellent shock capturing ability and high accuracy for the viscous flow simulations, such as the

capturing of the Navier–Stokes shock structure and laminar boundary layer. In this paper, for the first time

we are going to extend the gas-kinetic BGK scheme to the nearly incompressible isothermal flow simula-

tions. In order to get a clear idea about the similarity and differences between the LBM and the gas-kinetic

BGK scheme, the physical basis for both schemes will be analyzed. In an earlier paper, the gas-kinetic BGK
scheme is extended to the low-Mach number flow computation [20]. Since the energy equation is still kept

there, due to the viscous heating it may not have a clear connection with LBM. In order to have a more fair

comparison, the gas-kinetic BGK scheme and the LBM presented here are both for the isothermal Navier–

Stokes equations, where the energy equation is absent.

There are many similarities between the LBM and gas-kinetic BGK scheme. Both schemes are inherently

time-accurate explicit flow solvers, and a transient process is used to obtain steady state solutions. In this

paper, we are going to compare both schemes. As a supplement to the numerical solution in [8], the ac-

curacy of both methods will be tested in the 2D cavity flow simulation, where more detailed velocity profiles
along the central lines, as well as benchmark results, will be presented.
2. Lattice Boltzmann method and gas-kinetic scheme

2.1. Bhatnagar–Gross–Krook model for isothermal viscous flow

The gas-kinetic BGK model for the Boltzmann equation is

ft þ n � rf ¼ ðg � f Þ=s; ð2:1Þ

where the single particle distribution function f ¼ f ðx; n; tÞ is a time-dependent function of particle co-
ordinate x and velocity n, s is the relaxation time which characterizes typical collision process, and the local
Maxwellian equilibrium distribution function defined by

gðq; u; hÞ ¼ qð2phÞ�D=2
exp½�ðn � uÞ2=2h	;

where D is the dimension of the space n; q; u and h ¼ kT=m are the mass density, macroscopic velocity, and
normalized temperature per unit mass, respectively; k; T , and m are the Boltzmann constant, temperature,
and molecular mass. Note that the above equilibrium distribution function may be different from the real

monatomic, or diatomic gases. For the case D ¼ 3, the above g is the equilibrium state for a monatomic
gas. However, for D ¼ 2, the gas described by the above equilibrium state is limited to move only in a plane
without any random motion in the third direction, which does not correspond to any real gas distribution

function. Therefore, the above g is only served as a mathematical model for the 2D incompressible flow
simulation. As shown in [20], the inclusion of particle random motion in the third direction for a 2D flow
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does reduce its accuracy in comparison with the solution of the incompressible equations, especially when

the energy equation is included.

Since this paper is about the comparison of the LBM and gas-kinetic BGK method in the 2D case, the

following presentation refers to the 2D case only.

The mass density q, velocity u, and the temperature h are the hydrodynamic moments of f and g

q ¼
Z

f dn ¼
Z

gdn;
qu ¼
Z

nf dn ¼
Z

ngdn:

For the isothermal equations, h is a constant. With the Chapman–Enskog expansion, the moments of the
above equation lead to the compressible isothermal Navier–Stokes equations

otq þr � ðquÞ ¼ 0;
otðquÞ þ rðquuþ qhÞ ¼ �rPð1Þ;

where

Pð1Þ
ij ¼

Z
f neqninj dn ¼ �sqh oiuj

�
þ ojui �

2

D
okuk

�
:

In the incompressible limit, i.e., q ’ constant, the kinematic viscosity in the above equation becomes

m ¼ sh:

The continuous BGK equation (2.1) admits a formal integral solution

f ðx; n; t þ DtÞ ¼ 1
s

Z tþDt

t
gðx0; n; t0Þe�ðtþDt�t0Þ=s dt0 þ e�Dt=sf0ðx� nDt; nÞ; ð2:2Þ

where f0ðx; nÞ is the initial condition at time t, and the particle trajectory is x� x0 ¼ nðt þ Dt � t0Þ. In the
above equation, the free transport and collision are coupled at any point in space and time.

2.2. Operator splitting Boltzmann model

In most cases, the free transport and particle collision are separately treated in many kinetic schemes,

e.g., DSMC [2] and KFVS [18] methods. These schemes use an operator splitting Boltzmann model.

Originally, the lattice Boltzmann method was also considered to be based on the operator splitting
Boltzmann model. In the following, from Eq. (2.2), we are going to derive the operator splitting Boltzmann

equation. As shown in [6], the assumptions for its derivation are:

(i) The equilibrium state g between the point ðx; tÞ and ðxþ nDt; t þ DtÞ is approximated as

gðx0; n; t0Þ ¼ 1

�
� t0 � t

Dt

�
gðx; n; tÞ þ t0 � t

Dt
gðxþ nDt; n; t þ DtÞ;

where t0 2 ½t; t þ Dt	.
(ii) Dt=s 
 1 and

expð�Dt=sÞ ’ 1� Dt=s:
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Then, the integral solution (2.2) can be approximated as

f ðxþ nDt; n; t þ DtÞ � f ðx; n; tÞ ¼ Dt
s
ðgðx; n; tÞ � f ðx; n; tÞÞ: ð2:3Þ

The above equation can be considered as a new gas-kinetic model for the Boltzmann equation, where the

particle transport and collision are separated in a time interval Dt. Note that the space and phase space are
still continuous in the above equation, and time-step Dt is a free parameter, which can be varied under the
condition Dt 
 s. In the limiting case, such as Dt ! 0, the operator splitting kinetic model goes back to the
original BGK model. The above operator splitting kinetic model is the underlying governing equations for

many kinetic schemes, where the particle motion is composed of the subprocess of transport and collision.

As analyzed next, the corresponding macroscopic governing equations for the above equation will be

different from the one derived from the BGK model, where the collision and transport are coupled at any

point in space and time. But, in terms of macroscopic equations, as shown next, the difference between

BGK and the above operator splitting model is mainly coming from the modification of viscosity coeffi-

cient.

In the above operator splitting Boltzmann model, the space x and phase space n are continuous, and
Dt is a small time increment. Note that there is no lattice concept involved yet. Instead of Eq. (2.1),
Eq. (2.3) can be considered as a new governing equation. The corresponding macroscopic equations for

Eq. (2.3) can be derived before the construction of any numerical schemes to solve it. With the Taylor

expansion,

f ðxþ nDt; n; t þ DtÞ ¼
X1
n¼0

Dtn

n!
Dn

t f ðx; n; tÞ;

where Dt ¼ ðot þ n � rÞ, substituting the above expansion into Eq. (2.3), and up to ðDtÞ2, the governing
equation (2.3) becomes

Dtf þ Dt
2
D2t f ¼ � 1

s
ðf � gÞ; ð2:4Þ

where g is the equilibrium state. When using Eq. (2.4) to study the macroscopic flow behavior with a time
and length scales T and L with s 
 T, the above equation can be written in a dimensionless form

D~ttf þ �0
2
D2~tt f ¼ � 1

�
ðf � gÞ; ð2:5Þ

where D~tt ¼ TDt, � ¼ s=T, and �0 ¼ Dt=T < �. With the expansion of the distribution function

f ¼
X1
m¼0

�mf ðmÞ ¼ g þ
X1
m¼1

�mf ðmÞ ¼ g þ f neq;

and substituting the above expansion into Eq. (2.5), we have

�0 : D~ttg ¼ �f ð1Þ;

�1 : D~ttf
ð1Þ þ �0

2�
D2~tt g ¼ �f ð2Þ;

�2 : D~ttf
ð2Þ þ �0

2�
D2~tt f

ð1Þ ¼ �f ð3Þ;

..

.
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The compatibility conditions for the above equations areZ
1

n

� �
f ðmÞ dn ¼ 0 for m ¼ 1; 2; . . . :

Taking moments ð1; nÞT on the equation with order �0, we can get the isothermal Euler equations. Taking
the moments ð1; nÞT on Eq. (2.5) with order �1 and using the compatibility condition, the isothermal Na-
vier–Stokes equations can be obtained, where the viscosity coefficient m is

m ¼ s 1

�
� Dt
2s

�
h ¼ s

�
� Dt
2

�
h: ð2:6Þ

Due to the continuous nature of the phase space in Eq. (2.3), the Navier–Stokes equations including the

correct energy equation can be also derived from it with the modification of viscosity and heat conduction

coefficients. In other words, the model (2.3) can be faithfully applied to the compressible flow simulations.

Then, the problem becomes how to numerically solve it. For example, Sun�s scheme for compressible flow
simulation is one of the methods to solve Eq. (2.3) [22]. Since a small time increment involved in the vis-

cosity coefficient, in order to construct a scheme based on Eq. (2.3) with constant dissipative coefficients, a

uniform time increment is required. Also, due to the condition s � Dt, with a fixed time increment Dt, the
particle collision time has to be set beyond a certain value. For the high Reynolds number flow simulation,
where m has a small value, Eq. (2.6) requires s ’ Dt=2, which may violate the condition to derive the op-
erator splitting model. Therefore, it should be cautious to apply these schemes based on Eq. (2.3) in the high

Reynolds number flow simulations. If the additional term related to Dt in m of the macroscopic equations is
ignored, theoretically the operator splitting kinetic model becomes only a first-order accurate method for

the viscous governing equations. The analysis in [15] basically points out the splitting error in Eq. (2.3)

when Dt=2 is not included in the physical viscosity coefficient.
After having the governing equation (2.3), the main task left is how to use it to design a numerical

scheme. Many schemes, such as kinetic flux vector splitting schemes are coming from the above splitting
model [18]. The gas-kinetic BGK scheme presented in Section 2.5 is based on Eq. (2.2) directly, where the

transport and collision take place continuously in space and time.

2.3. Operator averaging Boltzmann model

Rather than assuming the particle transport in any time-step is free of collision as in the Operator-

Splitting-Boltzmann model, we may also assume the particle collision effect in a given time period takes the

average value of those at the beginning and end of the period. By doing so, the BGK equation (2.1) be-

comes

f ðxþ nDt; n; t þ DtÞ � f ðx; n; tÞ ¼ �Dt
2s

ðf neqðxþ nDt; n; t þ DtÞ þ f neqðx; n; tÞÞ: ð2:7Þ

Unlike in the Operator-Splitting model (see last section), Dt in an Operator-Averaging model is unlimited
by s. With the introduction of

�ff ¼ f þ Dt
2s

f neq; ð2:8Þ

the governing equation of �ff becomes

�ff ðxþ nDt; n; t þ DtÞ � �ff ðx; n; tÞ ¼ � Dt
s þ Dt=2

ð �ff ðx; n; tÞ � gðx; n; tÞÞ: ð2:9Þ
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Eq. (2.9) is very similar to the Operator-Splitting model (2.3) except two important facts. First, the variable

in the governing equation is no longer the particle distribution function anymore. Although the new

variable, �ff , still satisfies the compatible conditions

q ¼
Z

�ff dn ¼
Z

gdn;
qu ¼
Z

n �ff dn ¼
Z

ngdn;

it is nevertheless different from the real distribution function. This fact can be clearly demonstrated by the

inequality:

Z
nnf dn ¼ quuþ sqh oiuj

�
þ ojui �

2

D
okuk

�
6¼

Z
nn �ff dn

¼ quuþ ðs þ Dt=2Þqh oiuj

�
þ ojui �

2

D
okuk

�
:

Secondly, the denominator on the right-hand side of Eq. (2.9) is s þ Dt=2 instead of s as in Eq. (2.3).
Consequently, the Operator-Averaging model, Eq. (2.9) yields a correct kinematic viscosity of m ¼ sh in-
stead of m ¼ ðs � Dt=2Þh as in the Operator-Splitting model. The time-step in the Operator-Averaging
model is not restricted by Dt 
 s and small s can be used in practice to simulate high Reynolds number
flow.

It should be noted Eqs. (2.3) and (2.9) were mathematically identical if we disregarded the physical

meanings of the primary variable and the relaxation parameter. This is why Eq. (2.3) has been long con-

sidered as the starting point of the lattice Boltzmann method, despite the fact that LBM is proved to be

second-order accurate and the representation of the kinematic viscosity is different from the kinetic theory.

In the following section, we will formulate a lattice Boltzmann model based on Eq. (2.9). For simplicity, we

will drop the bar of �ff in the following texts.

2.4. Lattice Boltzmann method

The lattice Boltzmann method simulates fluid flow by tracking particle distribution function. Since it is

almost impossible to accomplish this task in continuous phase space, the LBM only tracks particle dis-
tribution along a handful directions. In another word, LBM solves Eq. (2.9) along a set of discrete velocity

in momentum space. Clearly, there are unlimited choices for discretization of phase space, but how to do

this in the most efficient way is a challenge. By the most efficient way, we mean to use minimum number of

discrete velocities to reproduce real physical laws (e.g., the Navier–Stokes equations).

In LBM, the momentum space is discretized in such a way that any moment integration of the

distribution function is approximated by quadrature up to a certain degree of accuracy. Interested

readers can go to He and Luo�s [6] paper for the derivation of D2Q9 model. For the isothermal Navier–
Stokes equations, the moments of the distribution function can be properly calculated by the 7-speed or
9-speed quadrature. For the 9-speed quadrature (D2Q9 model), see Fig. 1, the discretized scheme

becomes

faðxþ eaDt; tÞ � faðx; tÞ ¼ � Dt
s þ 0:5Dt ½faðx; tÞ � g	;



Fig. 1. Schematic description of LBM.
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where the equilibrium distribution function is defined as

g ¼ wiq 1

"
þ 3 ei � u

c2
þ 9
2

ðei � uÞ2

c4
� 3
2

ðu � uÞ
c2

#
;

where c is related to the grid size Dx and time-step Dt, i.e., c ¼ Dx=Dt. Here wi is the weight coefficients,

which have the following values for D2Q9 models:

w0 ¼ 4=9; w1 ¼ w3 ¼ w5 ¼ w7 ¼ 1=9; w2 ¼ w4 ¼ w6 ¼ w8 ¼ 1=36:

In order to have the particle moving from one node to another node in a time-step, we have

c ¼
ffiffiffiffiffi
3h

p
¼ Dx=Dt. Therefore, the viscosity coefficient for the D2Q9 model is

m ¼ sc2

3
: ð2:10Þ

Recovering of the energy equation is still a challenging problem in LBM [26]. This problem is not due to

the limited number of the particle velocities. In theory, one can always increase the number of discrete

velocities if it becomes necessary. Rather, the hurdle comes from the conflict between the synchronization of

particle movement in the LBM and the dependence of momentum discretization on local temperature. For

high Mach number flow, the momentum discretization should basically depend on local macroscopic

velocity. The synchronization of the particle movement means that all particles move from one computa-

tional node to another at one time-step. It greatly simplifies the algorithm and facilitates parallel computing.
For low-Mach number, isothermal flow, the momentum discretization can be constructed independently of

local macroscopic variables and the synchronization of the particle movement can be readily guaranteed.

For thermal problem or high Mach number flow, however, this synchronization will inevitably be destroyed

and an additional interpolation step has to be introduced to reconstruct the nodal values at next time-step.

The thermal LBM scheme constructed this way may recover to the gas-kinetic BGK scheme.

2.5. Gas-kinetic BGK scheme

For a finite volume method, the discretization is accomplished by dividing the flow into a large number

of small subdomains in the physical space. Taking the moments wa ¼ ð1; nx; nyÞT to the BGK equation (2.1),
we have
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d

dt

Z
X

waf dndV þ
Z
oX

wanf dn � ndr ¼ 0 ð2:11Þ

to each subdomain X with boundary oX, see Fig. 2. Due to the compatibility condition, the collision term
has no contribution to the update of the conservative variables inside each cell, but it does effect the fluxes

across cell interfaces. In a gas-kinetic BGK scheme, the flux vectors across cell boundaries are calculated

based on the gas distribution function. We use Eq. (2.2) to evaluate f at a cell interface, such as the point 0
in Fig. 2. Next, we are going to evaluate the distribution function f at this point.
Denote the location of the interface, such as the point 0 in Fig. 2, as x0 ¼ ð0; 0Þ. The initial condition

f0ðx; n; t ¼ 0Þ at the beginning of each time-step around this point x0 is assumed to be a distribution
function truncated to the Navier–Stokes order

f0ðx; n; 0Þ ¼ gðx0; n; 0Þ þ f ð1Þðx0; n; 0Þ þ ðx� x0Þ � rg:

Here the equilibrium state gðx0; n; 0Þ has the distribution

g ¼ q0
k
p

� �
e�kðn�u0Þ2 ; ð2:12Þ

which can be determined from the macroscopic variables (q0; q0u0) there, see Appendix A for the inter-
polation of the macroscopic variables. For the isothermal NS equations, k ¼ 1=2h is a constant. With a
given Mach number M , k is determined by

k ¼ M2=ð2u21Þ:

For the BGK model, the non-equilibrium states f ð1Þ is f ð1Þ ¼ �sDg, and D ¼ ot þ n � r, which becomes

f ð1Þ ¼ �sðog=ot þ n � rgÞ:

Taking derivative to the equilibrium distribution g gives

f ð1Þ ¼ �sðanx þ bny þ AÞg; ð2:13Þ

where og=ox ¼ ag; og=oy ¼ bg; og=ot ¼ Ag and

a ¼ a1 þ a2nx þ a3ny ;
b ¼ b1 þ b2nx þ b3ny ;
Fig. 2. A finite volume gas-kinetic BGK scheme, where the flow variables at the interface, such as at points 0, 5, and 6, need to be

interpolated from the cell averaged values.
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A ¼ A1 þ A2nx þ A3ny :

The coefficients a1; a2; . . . ; b3 can be found from the relation

Z Z 1

nx

ny

0
@

1
Aagdnx dny ¼

oq=ox
oðquÞ=ox
oðqvÞ=ox

0
@

1
A

and

Z Z 1

nx

ny

0
@

1
Abgdnx dny ¼

oq=oy
oðquÞ=oy
oðqvÞ=oy

0
@

1
A:

The interpolation of the macroscopic variables of q and qu around point 0 in Fig. 2 is presented in Ap-
pendix A. Appendix B gives the method to get these coefficients in a and b from the above equations. After
determining a and b, the term A in Eq. (2.13) is obtained from the compatibility condition

Z Z 1

nx

ny

0
@

1
Af ð1Þdnx dny ¼ 0;

which gives

Z Z 1

nx

ny

0
@

1
AAgdnx dny ¼ �

Z Z 1

nx

ny

0
@

1
Aðanx þ bnyÞgdnx dny :

Since a and b are known, the value of A1; A2; and A3 in A can be obtained using Appendix B again.
Therefore, in the 2D case with x; y coordinates, f0 at time t ¼ 0 can be written as

f0ðx; n; tÞ ¼ g 1
�

� sðanx þ bny þ AÞ þ axþ by


: ð2:14Þ

Note that for the isothermal incompressible NS equations, the solutions are supposed to be smooth, i.e., no
shocks formed, the kinematic dissipation through the introduction of discontinuity at a cell interface is not

included in the above expression of f0 [24].
The equilibrium distribution in space and time around point ðx0; t ¼ 0Þ can be obtained from the ex-

pansion of an equilibrium state

gðx; n; tÞ ¼ gðx0; n; 0Þ þ ðog=oxÞxþ ðog=oyÞy þ ðog=otÞt ¼ gð1þ axþ by þ AtÞ:

Substituting both g and f0 into the integral solution (2.2), the distribution function at a cell interface be-
comes

f ðx0; n; tÞ ¼ gð1� sðanx þ bny þ AÞ þ tAÞ; ð2:15Þ

from which the fluxes across the cell interface can be evaluated. For example, based on the above f , the flux
in the x-direction at point 0 becomes

Fq

Fqu

� �
iþ1=2;j

¼
Z Z

nx
1

n

� �
f ðx0; n; tÞdnx dny : ð2:16Þ

Theoretically, it has been shown that in the smooth region Eq. (2.15) is truly solving the Navier–Stokes
equations [16]. Similarly, Gi;jþ1=2, the fluxes in the y direction at other boundaries can be obtained using



K. Xu, X. He / Journal of Computational Physics 190 (2003) 100–117 109
the above process. With both fluxes in the x and y directions, Eq. (2.11) becomes a discretized form for the
cell X

q
qu

� �nþ1

X

¼ q
qu

� �n

X

þ
Z Dt

0

1

Dx
ðFi�1=2;j

�
�Fiþ1=2;jÞ þ

1

Dy
ðGi;j�1=2 � Gi;jþ1=2Þ

�
dt;

where the inviscid and viscous fluxes are included in the integration of a single distribution function. The

extension of the current scheme to the Rayleigh–B�eenard simulation was given in [25].
3. Numerical experiments

The above gas-kinetic BGK scheme and the LBM are tested in the 2D cavity flow case. There is

complicated wave structure involved in this case and highly accurate solutions have been obtained by Ghia

et al. [5], and lately by Botella and Peyret [3]. The Ghia�s results are based on finite difference scheme for the
stream-vorticity formulation. Recently, Botella and Peyret use Chebyshev collocation method and im-

proved solutions are obtained using a subtraction method around the corners (singularities) for the case of
Reynolds number 1000. More importantly, the benchmark pressure data along the centerlines is presented

in [3]. For the cavity flow, due to its simple geometry several higher-order compact schemes were proposed,

which produced highly accurate results using less grid points, e.g. [12,19].

The computational mesh used for both LBM and gas-kinetic BGK schemes is 257� 257 grid points. For
the gas-kinetic BGK scheme, the time-step is determined by the CFL condition, i.e., Dt ¼ gDx=ðjujmax þ CÞ,
where C is the sound speed C ¼

ffiffiffiffiffiffiffiffiffiffi
1=2k

p
. In all calculations, a time-step with CFL number g equal to 0.5 is

used. For very low Reynolds number flow simulation, such as Re ¼ 10, another criteria for the time-step,
i.e., ðDxÞ2=m, has to be imposed. The Mach number used for the gas-kinetic BGK scheme is 0.15. In terms of
boundary condition, a ghost cell inside boundary is created with the density q�1 and momentum q�1u�1.

For the non-slip boundary condition, we have

q�1 ¼ q1 and q�1u�1 ¼ �q1u1;

where 1 refers to the first cell inside the domain. In the cavity case, the up-wall is moving with velocity u0,

therefore, the flow variables in the ghost cell there is set to be q�1 ¼ q1 and q�1u�1 ¼ 2q1u0 � q1u1. After
setting up the values at the ghost cells, the boundary is treated as other cells inside the domain and the

fluxes across the boundary are calculated by the method presented in the last section.

The boundary condition for the LBM simulations uses the bounce-back rule for non-equilibrium dis-
tribution which was outlined in [7]. This boundary condition is consistent with Grad�s thirteen moment
expansion theory for gas-kinetic theory. The velocity at the moving wall is fixed and the density is adjusted

automatically according to the non-equilibrium bouncing rule. Special attention needs be applied to the

boundary condition at the upper corners where singularity occurs. Treating the corners as parts of the top

moving wall would underestimate the pressure difference between two corners; while treating the corners as

parts of the stationary side walls would over-predict the pressure difference. A more realistic approach is

compromising between these two restraints. In our LBM simulations, we implement this by assigning the

incoming horizontal distribution function at the upper corners with the average of the outgoing horizontal
distribution functions there.

Since the gas-kinetic BGK scheme and LBM are transient flow solvers, in order to get a steady state

solution, the gas-kinetic BGK and LBM are run at least 500,000 time steps for each case. For the high

Reynolds number case, more time steps are used. The simulation results, as well as the benchmark solu-

tions, are presented in Figs. 3–5 for Reynolds numbers 1000, 5000, and 7500, respectively. In all cases,

almost identical solutions are obtained from both the gas-kinetic BGK scheme and the LBM. With the



Fig. 3. Velocity and pressure distributions calculated by the LBM and gas-kinetic BGK scheme along the central lines at Re ¼ 1000.
The benchmark results are from Ghia et al. [5] and Botella and Peyret [3].
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Fig. 3. (continued )
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Reynolds number increased to 5000, the pressure distributions start to exhibit some oscillation, even though

the velocity distributions are smooth and close to the Ghia et al.�s results. These oscillations will enhance
more at even higher Reynolds number (data not shown), and bifurcations appear [17]. We suspect these
oscillations are due to acoustic waves and plan to carry further studies on this subject in future.



Fig. 4. Simulation results from the LBM and gas-kinetic BGK scheme at Re ¼ 5000, where only Ghia et al. [5] benchmark results
(velocity) are available.
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Fig. 4. (continued )
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Fig. 5. Simulation results from the LBM and gas-kinetic BGK scheme at Re ¼ 7500.
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4. Conclusion

In this paper, for the first time two schemes based on the gas-kinetic Boltzmann equation are

compared in the simulation of low speed, nearly incompressible flows. Due to the same intrinsic gov-

erning equation, both schemes are equivalent to solving the compressible isothermal Navier–Stokes

equations. Comparable solutions are obtained from both schemes. In terms of boundary treatment, both

schemes are easy to implement different kind of boundary conditions, such as isothermal, adiabatic, non-

slip, etc. The numerical results in this paper demonstrate that a compressible code can be confidently
used in the incompressible flow simulation for a velocity field, and the Mach number does not need to

take a very small value. The understanding of the operator splitting and average models from the

Boltzmann equation and their connection to the LBM and many other kinetic schemes need to be

clarified in future.
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Appendix A. Interpolation of macroscopic flow variables at point 0 of Fig. 2

With the known cell averaged conservative quantities w ¼ ðq; quÞT at cells 1, 2, 3, and 4, first we can use
a third-order interpolation to get the pointwise values at point 0

w0 ¼
7

12
ðw2 þ w3Þ �

1

12
ðw1 þ w4Þ;

and the corresponding slope in x-direction becomes

ow
ox

¼ 5
4
ðw3 � w2Þ=Dx�

1

12
ðw4 � w1Þ=Dx:

If w0 is outside the range determined by w2 and w3, a second-order interpolation is used

w0 ¼
1

2
ðw2 þ w3Þ

and

ow
ox

¼ ðw3 � w2Þ=Dx:

Similarly, the pointwise values at points 5 and 6, such as w5 and w6, can be obtained from the cell averaged
values on their rows. Therefore, the y-derivative for w at point 0 is constructed as

ow
oy

¼ ðw5 � w6Þ=2Dy if ðw5 � w0Þ � ðw0 � w6ÞP 0;
0 if ðw5 � w0Þ � ðw0 � w6Þ < 0:

�

At the boundary of the cavity flow, only a second-order interpolation is used in the construction of w0 and
the corresponding gradients.
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Appendix B. Determination of the coefficients of a Maxwellian expansion

In the gas-kinetic scheme, from the moments we need to evaluate the parameters in the expansion of gas

distribution function. With a Maxwellian distribution function g

g ¼ q
k
p

� �
e�kððnx�uÞ2þðny�vÞ2Þ;

we have the following moments:

Z Z 1

nx

ny

0
@

1
Aða1 þ a2nx þ a3nyÞgdnx dny ¼

~bb1
~bb2
~bb3

0
@

1
A �

oq=ox
oðquÞ=ox
oðqvÞ=ox

0
@

1
A;

where both g and ð~bb1; ~bb2; ~bb3Þ are known. The above equation can be rewritten as

b1
b2
b3

0
@

1
A ¼ M

a1
a2
a3

0
@

1
A; ðB:1Þ

where b ¼ ~bb=q and the matrix M has the form

M ¼
1 u v
u u2 þ 1=2k uv
v uv v2 þ 1=2k

0
@

1
A:

Defining

r2 ¼ b3 � vb1;
r1 ¼ b2 � ub1

the solutions of Eq. (B.1) are

a3 ¼ 2kr2;
a2 ¼ 2kr1;

and

a1 ¼ b1 � ua2 � va3:

The above solution can also be used to evaluate both b and A, because the matrixM is identical in all these

cases.
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